95 research outputs found

    Quasi-Brittle Fracture Modeling of Preflawed Bitumen Using a Diffuse Interface Model

    Get PDF
    Fundamental understandings on the bitumen fracture mechanism are vital to improve the mixture design of asphalt concrete. In this paper, a diffuse interface model, namely, phase-field method is used for modeling the quasi-brittle fracture in bitumen. This method describes the microstructure using a phase-field variable which assumes one in the intact solid and negative one in the crack region. Only the elastic energy will directly contribute to cracking. To account for the growth of cracks, a nonconserved Allen-Cahn equation is adopted to evolve the phase-field variable. Numerical simulations of fracture are performed in bituminous materials with the consideration of quasi-brittle properties. It is found that the simulation results agree well with classic fracture mechanics

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Fractal Analysis on Asphalt Mixture Using a Two-Dimensional Imaging Technique

    Get PDF
    Fractal is a mathematical set that has a fractal dimension which usually exceeds its topological dimension and may be nonintegral. Since the asphalt pavement texture has limitations of randomness and self-similarity, fractal theory has been explored to quantify the asphalt pavement texture and employs good applicability in processing and analyzing the complex details of research object. In this paper, the 2D digital image of the pavement surface is measured in terms of area fractal dimension and contour fractal dimension, which are used to correlate with aggregate gradation and British Pendulum Number (BPN) value, respectively. It turns out the area fractal dimension of aggregate provides a simple way to acquire the continuous gradation of asphalt concrete sample and the contour fractal dimension is an available parameter to characterize roughness and friction of pavement surface texture

    Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser

    Get PDF
    A novel approach to saturable absorber (SA) formation is presented by taking advantage of the mode coupling property of excessively tilted fiber grating (Ex-TFG). Stable mode-locked operation can be conveniently achieved based on the interaction between Ex- TFG coupled light and deposited ferroferric-oxide (Fe3O4) nanoparticles. The central wavelength, bandwidth and single pulse duration of the output are 1595 nm, 4.05 nm, and 912 fs, respectively. The fiber laser exhibits good long-term stability with signal-to-noise ratio (SNR) of 67 dB. For the first time, to the best of our knowledge, Ex-TFG based Fe3O4 SA for mode-locked fiber laser is demonstrated

    Seed Germination Responses to Seasonal Temperature and Drought Stress Are Species‐Specific but Not Related to Seed Size in a Desert Steppe: Implications for Effect of Climate Change on Community Structure

    Get PDF
    Investigating how seed germination of multiple species in an ecosystem responds to environmental conditions is crucial for understanding the mechanisms for community structure and biodiversity maintenance. However, knowledge of seed germination response of species to environmental conditions is still scarce at the community level. We hypothesized that responses of seed germination to environmental conditions differ among species at the community level, and that germination response is not correlated with seed size. To test this hypothesis, we determined the response of seed germination of 20 common species in the Siziwang Desert Steppe, China, to seasonal temperature regimes (representing April, May, June, and July) and drought stress (0, −0.003, −0.027, −0.155, and −0.87 MPa). Seed germination percentage increased with increasing temperature regime, but Allium ramosum, Allium tenuissimum, Artemisia annua, Artemisia mongolica, Artemisia scoparia, Artemisia sieversiana, Bassia dasyphylla, Kochia prastrata, and Neopallasia pectinata germinated to \u3e60% in the lowest temperature regime (April). Germination decreased with increasing water stress, but Allium ramosum, Artemisia annua, Artemisia scoparia, Bassia dasyphylla, Heteropappus altaicus, Kochia prastrata, Neopallasia pectinata, and Potentilla tanacetifolia germinated to near 60% at −0.87 MPa. Among these eight species, germination of six was tolerant to both temperature and water stress. Mean germination percentage in the four temperature regimes and the five water potentials was not significantly correlated with seed mass or seed area, which were highly correlated. Our results suggest that the species‐specific germination responses to environmental conditions are important in structuring the desert steppe community and have implications for predicting community structure under climate change. Thus, the predicted warmer and dryer climate will favor germination of drought‐tolerant species, resulting in altered proportions of germinants of different species and subsequently change in community composition of the desert steppe

    A glycometabolic gene signature associating with immune infiltration and chemosensitivity and predicting the prognosis of patients with osteosarcoma

    Get PDF
    BackgroundAccumulating evidence has suggested that glycometabolism plays an important role in the pathogenesis of tumorigenesis. However, few studies have investigated the prognostic values of glycometabolic genes in patients with osteosarcoma (OS). This study aimed to recognize and establish a glycometabolic gene signature to forecast the prognosis, and provide therapeutic options for patients with OS.MethodsUnivariate and multivariate Cox regression, LASSO Cox regression, overall survival analysis, receiver operating characteristic curve, and nomogram were adopted to develop the glycometabolic gene signature, and further evaluate the prognostic values of this signature. Functional analyses including Gene Ontology (GO), kyoto encyclopedia of genes and genomes analyses (KEGG), gene set enrichment analysis, single-sample gene set enrichment analysis (ssGSEA), and competing endogenous RNA (ceRNA) network, were used to explore the molecular mechanisms of OS and the correlation between immune infiltration and gene signature. Moreover, these prognostic genes were further validated by immunohistochemical staining.ResultsA total of four genes including PRKACB, SEPHS2, GPX7, and PFKFB3 were identified for constructing a glycometabolic gene signature which had a favorable performance in predicting the prognosis of patients with OS. Univariate and multivariate Cox regression analyses revealed that the risk score was an independent prognostic factor. Functional analyses indicated that multiple immune associated biological processes and pathways were enriched in the low-risk group, while 26 immunocytes were down-regulated in the high-risk group. The patients in high-risk group showed elevated sensitivity to doxorubicin. Furthermore, these prognostic genes could directly or indirectly interact with other 50 genes. A ceRNA regulatory network based on these prognostic genes was also constructed. The results of immunohistochemical staining showed that SEPHS2, GPX7, and PFKFB3 were differentially expressed between OS tissues and adjacent normal tissues.ConclusionThe preset study constructed and validated a novel glycometabolic gene signature which could predict the prognosis of patients with OS, identify the degree of immune infiltration in tumor microenvironment, and provide guidance for the selection of chemotherapeutic drugs. These findings may shed new light on the investigation of molecular mechanisms and comprehensive treatments for OS

    Hypoxia inducible factor-1ɑ as a potential therapeutic target for osteosarcoma metastasis

    Get PDF
    Osteosarcoma (OS) is a malignant tumor originating from mesenchymal tissue. Pulmonary metastasis is usually present upon initial diagnosis, and metastasis is the primary factor affecting the poor prognosis of patients with OS. Current research shows that the ability to regulate the cellular microenvironment is essential for preventing the distant metastasis of OS, and anoxic microenvironments are important features of solid tumors. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) expression levels and stability increase. Increased HIF-1α promotes tumor vascular remodeling, epithelial-mesenchymal transformation (EMT), and OS cells invasiveness; this leads to distant metastasis of OS cells. HIF-1α plays an essential role in the mechanisms of OS metastasis. In order to develop precise prognostic indicators and potential therapeutic targets for OS treatment, this review examines the molecular mechanisms of HIF-1α in the distant metastasis of OS cells; the signal transduction pathways mediated by HIF-1α are also discussed

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Biological N fixation but not mineral N fertilization enhances the accumulation of N in peanut soil in maize/peanut intercropping system

    Get PDF
    Legume/cereal intercropping has the potential to maximize the use of resources to raise yields due to enhanced nitrogen (N) fixation by legume root nodules, while high N fertilization may inhibit the nodulation of legume. However, whether legume/cereal intercropping can promote the accumulation of soil N storage with N fertilization and its underlying mechanism are less clear. Here, we evaluated the long-term (5 years) effects of maize/peanut intercropping and mineral N fertilization on peanut soil total N content and soil N cycling functional genes. The experiment includes two planting patterns (peanut maize intercropping and peanut monocropping) with three N fertilization rates (0, 150, and 300 kg N ha−1). Intercropping increased soil total N content (STN) by average 18.2%, and the positive effect of intercropping on STN decreased with N application rate. Highest N application decreased the nodule fresh weight (NFW) by 64.3% and 46.0% in intercropping and monocropping system, respectively. However, intercropping has no effect on NFW. Intercropping increased the nifH gene abundance by average 26.5%. SEM analysis indicated that NFW and nifH gene abundance combined can explain 46% of the variance of STN. Our results indicate that biological N fixation but not mineral N fertilization enhances the accumulation of N in soil planted with peanut in maize/peanut intercropping system.info:eu-repo/semantics/publishedVersio
    corecore